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1. Introduction 

This report discusses how human factors engineering (HFE) is a critical element in the process  
of sensor fusion.  For this report, the definition of sensor fusion is the one created by the Joint 
Directors of Laboratories (JDL)1.  With the JDL definition and models, we review each sensor 
fusion process step from an HFE perspective, we discuss how human factors variables play a 
significant role for each element of that process, and we discuss how enhancing the role of HFE  
in the sensor fusion process will result in a more effective human-machine system.  Examples to 
illustrate these issues often refer to the military domain, military aviation, military intelligence, 
automated systems, or computer operations. 

1.1 Background 

1.1.1 Basic Concepts 

Sensor fusion is the process of collecting data, combining those data through a variety of methods, 
with a variety of sensing technologies, and presenting those data as an integrated product to a 
machine or a human.  The basic advantage to fusing data is that (a) it should be faster and more 
effective in presentation than if the data were not fused and (b) combining data results in a richer, 
more intelligible output that is functionally greater than the sum of its parts.  The following defini-
tion emphasizes the concept of fusion from a cognitive perspective, regardless of the type of sensor 
system involved: 

Fusion pools multiple bodies of evidence to produce a single body of evidence 
that emphasizes points of agreement and de-emphasizes points of disagreement 
(SRI2, 2006). 

This definition of fusion emphasizes that the process of fusing data is essentially like a logical 
argument, in which principles, facts, and rules all combine to form and then persuade a conclusion.  
It is analogous to the testing of a hypothesis in the scientific process and is called an evidential 
operation (SRI, 2006); however, fusion is also selective in its processing of information and may 
not always follow a strict a priori logical approach.  This is evident in the consideration of human-
based fusion of information where heuristics (rules of thumb) or recognition-primed decisions may 
sort information in ways that machines are not currently capable of doing.  In principle, fusion may 
be accomplished by human or machine systems. 

Most of the discussion in this report relies on the fact that machines have electro-mechanical 
sensors and computer-based cognition, whereas humans have the five senses plus human cogni-
tion.  Humans combine the input of their senses into a cohesive product through cognition, which 

                                                 
1Army, Navy, and Air Force science and technology directors 
2not an acronym 
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then can result in actions.  As a discussion point, it is posited that humans operate in ways similar 
to machines, from the standpoint of combining input data and information into an output action.  
This system’s view recognizes differences as well as similarities between machines and humans in 
the acquisition and processing of data, as well as the final output products achieved by both.  Some 
of these similarities and differences are discussed in this report. 

Traditional sensor fusion often involved detailed mathematical algorithms that controlled the 
processing of information to reach a complex goal such as detecting, classifying, and identifying  
a target (Ceruti, 2004).  However, for the purposes of this discussion, the interaction of human 
cognitive processes in creating and using information is the focus of the discussion.  For example, 
in the aviation environment, some sensors provide system status information, others provide 
mission information, while still others provide communications linkages, weapons status, or 
current enemy threat status.  A similar process is followed in the electronic warfare environment 
where “multiple levels of abstraction, multiple sensors and various evidential operations all 
combine to predict changes in observables” (SRI, 2006).  The original goal for electronic warfare 
and aerospace system’s sensor fusion was to combine all these sources of data into a cohesive 
whole from which a machine or human operator could draw in order to make more effective 
operational decisions (Bowman & Murphy, 1980).  This approach for aerospace was in marked 
contrast to earlier aerospace systems where routines were fully automated (programmed or “hard 
wired” as in an early ballistic missile), and it was also in contrast to systems where federated or 
isolated sensors, acting as single sources and providing information for a single purpose, were 
usually monitored by a human operator (as in an early aircraft cockpit or an intelligence analyst 
monitoring one radio channel).  Now, on advanced aircraft such as the F-22, the pilot manipulates 
the throttles to provide a thrust request from the central processing computer on the aircraft, and 
the computer in turn determines if that request can be complied with, based on fused input from 
sensors that monitor aircraft and external parameters.  Those variables are in turn fused by a main-
frame computer and the thrust request is completed or mitigated, which is very different from 
traditional manual control of that process.  Likewise, modern electronic warfare systems may 
include sensor feeds from multiple sources that are combined on a single display format into a new 
image reflecting the qualities of all the sensors but not resembling any one sensor. 

1.1.2 Sensor Fusion as a Process 

In terms of human-computer interaction, current sensor fusion systems provide a cohesive 
picture, often using graphic and auditory technologies.  Display screens, headsets, and auditory 
warnings are all examples of the final delivery means from which raw sensor data are fused into 
information and then channeled to the system operator in ways they can comprehend accurately 
and quickly.   

1.1.3 Sensor Fusion Defined 

The JDL’s (White, 1988) Sub-panel on Data Fusion has defined data fusion as 
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…a process dealing with the association, correlation, and combination of data and 
information from single and multiple sources to achieve refined position and identity 
estimates, and complete and timely assessments of situations and threats, and their 
significance. The process is characterized by continuous refinements of its estimates and 
assessments, and the evaluation of the need for additional sources, or modification of the 
process itself, to achieve improved results… 

This definition provides guidance that describes a closed loop learning process that iteratively 
refines an assessment of a situation, much like a sensor-fused guidance system supplying 
navigation input to a missile.  Note that the JDL definition provides a process statement that uses 
human information processing techniques of association, correlation, and a combination of data 
and information from numerous sources (sensor fusion) to identify the goals refine position and 
identity estimates and to quickly and iteratively make assessments of situations and threats while 
using a closed loop approach to achieve improved results.  What is missing from this definition is 
the focus on how a human can perform this process, particularly in an environment where 
automated systems are providing the bulk of the information and the human is under the dynamic 
conditions of multiple tasking.  

A review of the data fusion model as proposed by the JDL describes the data fusion domain as one 
of parallel processing with sources such as “national, distributed, and local” providing intelligence, 
electronic warfare, sonar, radar, or other types of information sources as outside the central block 
that describes the five levels of processing (see figures 1 and 2).  In addition, the human-computer 
interface is seen as outside the central data fusion domain (it is shown to the right side of the 
diagram).  The levels are described in figure 1 and are shown in a model format in figure 2.  The 
JDL model shown in figure 2 also includes another step which is user refinement (an element of a 
closed loop process).  The two figures also show the changes that have occurred in the model over 
time. 

The JDL Model (1987-91)
and the draft revised model (1997) 

Level 0 — Sub-Object Data Association and Estimation: Pixel/signal level data association and 
characterization 

Level 1 — Object Refinement: Observation-to-track association, continuous state 
estimation (e.g. kinematics) and discrete state estimation (e.g. target type and 
ID) and prediction 

Level 2 — Situation Refinement: Object clustering and relational analysis, to include 
force structure and cross force relations, communications, physical context, etc. 

Level 3 — Significance Estimation [Threat Refinement]: Threat intent estimation, 
event prediction], consequence prediction, susceptibility and vulnerability 
assessment 

Level 4 — Process Refinement: Adaptive search and processing (an element of resource 
management)  

Figure 1.  The JDL model, 1987-91 with 1997 revisions (Steinberg, Bowman, & White, 1999). 
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Figure 2.  Revised JDL user model, 2003-2006 (Blasch & Plano, 2003). 

 

2. Purpose of Report 

The purpose of this report is to provide a general review of the sensor fusion process as defined 
by the JDL from the perspective of selected human engineering principles.  

 

3. Method 

3.1 Human Engineering Principles Applied to Sensor Fusion  

The discussion of how humans process information includes a discussion of each of four basic 
principles that apply to human cognition and subsequent action.  These principles are listed next 
and form the structure for the discussion that follows regarding the specific elements of the JDL 
model: 

 Human Versus Machine Process Cycles Comparison 

 Human Processing of Information 

 Human Logic in the Processing of Information 

 Subjective Factors That Affect Human Processing of Cognitive Information, Data Risk, 
Data Value, and Cognitive Bias 
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3.1.1 Human Versus Machine Process Cycles Comparison 

Although both machines and humans work through an input-throughput-output cycle, the processes 
within that cycle are very different.  Machines, as discussed in this report, represent complex com-
puter-integrated systems that have the ability to collect data from sources or sensors and perform 
complex activities during complex circumstances, and such machines typically operate in an objec-
tive, digital environment where the flow of work is controlled tightly by the processes inherent to 
that machine’s design and programming.  For example, a computer uses electricity generated by fuel 
combustion to create digital data through hardware and software.  In contrast, a human metabolizes 
food to generate electricity to control neurons that process information collected and coded by the 
senses; this information is subsequently organized by the brain (a cognitive process).  Both systems 
(machine and human) can yield a similar result in many cases, but understanding each of their 
processes allows a better understanding of the suitability of each of those systems in producing a 
defined overall system output and is also critical in allocating functions to each.  In the case of many 
examples described in this report, a system usually consists of human and machine contributions 
toward a complex goal that is ultimately defined by the human. 

The human, as opposed to the machine, primarily functions in a subjective world where all infor-
mation and action are controlled by numerous, subjective processes.  This huge difference in basic 
operating system features provides for the strengths and weaknesses of each system (human versus 
machine) and the need remains for both to work together in an integrated and complementary 
fashion to achieve goals that neither could accomplish alone. 

The process styles mentioned are biologically or electrically based, but in processing machine  
data, sensor fusion systems use set filtering methods (e.g., Kalman filters) that “keep updating the 
system’s view of data changes in a very efficient way (i.e., they use the last updated result/data 
point and only use new information to update it, and then that new data point is later used as the 
reference point for the next round of new information) overall, which helps reduce the processing 
requirement on the system.  However, it is critical that the algorithms are “human factored” so that 
they do not get progressively off track” (de Pontbriand, 2006; Kalman, 1960; Kalman & Bucy, 
1961). 

Other types of information filters include Markov, stochastic, or Bayesian approaches or even 
neural nets where software agents selectively seek specific information and update their models 
based on that information (these machines not only selectively use information sources but allow 
the system to tune itself through an understanding of measurement noise and the use of recursive 
processes where the system can learn by its mistakes) (Abdi, 2003; Pinheiro & Lima, 1999).  
However, many of these algorithms are based on fixed sets of logic, whether it is the consideration 
of Gaussian noise in the collection of data (Kalman filtering) or updating information based on 
fixed algorithms of a set distribution (other Stochastic methods) (Pinheiro & Lima, 1999). 

In the case of humans, the context for these cognitive processes is often based on not only recent 
or easily available data nor on probabilities but on other factors such as described by Klein as 



6 

external knowledge sources unavailable to machine systems.  The recognition-primed decision 
model (RPDM) as postulated by Ross, Klein, Thunholm, Schmitt, and Baxter (2004) was a 
refinement of a model originally established in 1989 by Klein, Calderwood, and Clinton-Cirocco 
and describes the theory behind several human cognitive processes.  The RPDM postulates that 
pattern matching, diagnosing a situation, and evaluating a course of action are all higher order 
processes that humans use in processing information and solving problems.  Within that three-
element structure, other factors such as perception of a situation as typical or atypical then leads 
to a recognition involving expectancies:  relevant cues, plausible goals, and typical actions.  This 
approach is quite removed from machine logic where a more mechanistic, deductive process is 
often implemented. 

3.1.2 Human Processing of Information 

One of the processes illustrated in the JDL diagrams is parallel processing of information at several 
levels (Steinberg, Bowman, & White, 1999; Hall, 2005).  While it is true that humans can process 
information in parallel, when that task is accomplished, real-time, overall task performance often 
suffers dramatically (Wickens, 1987).  An analogy is the task of driving while one is talking on a 
cell phone, an action that can and is accomplished with regularity but with significant performance 
decrements in other tasks.  The converse of this dual tasking problem is that people can either 
drive or talk on a cell phone with very good performance but not in parallel unless they wish to 
reduce their performance of one or both activities dramatically, even though both tasks may be 
heavily practiced (Cohen, Dunbar, & McClelland, 1990).  This area of primary and secondary 
tasking is also complicated by the human sensory channels being used for that processing 
(Wickens, 1987).  However, it is also possible for humans to process information in parallel with 
greater facility as that activity becomes more automated via repetition and practice (Wickens, 
1987; Cohen, McClelland, & Dunbar, 1990).  Humans with a lot of experience in a certain area of 
activity are called experts, and after an activity is learned to a high level of expertise, it becomes 
more automated in nature.  However, no matter what the level of human of expertise that an 
individual has in performing a task, that task must compete for limited time and mental resources 
in order to continue effectively (Sanders & McCormick, 1993).  Humans can operate to some 
degree using parallel processing but not nearly to the degree that automated, mechanical systems 
can parallel process information.  A specific model of how humans process information is 
discussed in the following sections.  The Wickens’ model of attention (Wickens & Hollands,  
2000) is shown in figure 3.  

This model posits that our attentional resources (and by analogy, all our resources) are finite and 
through various mechanisms associated with human physiology and cognition, address problems 
through a closed loop process involving sensing data (short-term sensory store), perceiving data (as 
a sensor would for a machine), and then applying attention resources (energy, motivation, 
cognition, etc.) through an iterative process to reach an outcome (response).  In turn, the closed 
loop nature of this action is the feedback process called learning.  This model of human 
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performance is similar to that of the JDL process model but has a wide variety of differences that 
are discussed in this report. 

 
Figure 3.  The Wickens' model of human attention (Wickens & Hollands, 2000). 

Human cognition or the process of thinking involves actions and outcomes that are currently 
orders of magnitude more complex than those of any machine.  With a computer as an example 
of a typical machine, it contains an ON and OFF control and then an ever-broadening array of 
energy flow-switching and storage mechanisms that allow digital processes to occur at the speed 
of light via a binary, deductive, and digital logic system.  However, with all that complexity, 
even the most powerful computers would be no match for an infant in terms of discovery and 
cognitive growth.  Without the ability of locomotion (inferring continual and dramatically 
varying sensor input), self-sustainment of operating energy, and a diverse cognition logic basis,  
a machine cannot progress or learn at the same rate as the human in a variety of domains. 

3.1.3 Human Logic in the Processing of Information 

How do these human-machine examples relate to the process of sensor fusion in the formation of 
conclusions and then actions?   

If humans processed information purely in parallel, they would have to consider all input at the 
same time (which they cannot do since they are perceptually limited to only a few channels of 
information processing [visual, auditory, and proprioceptive]), and those channels are bandwidth 
limited.  If they were processing the same items in series, they would have to consider each item 
as it contributes to the solution as a sum (a very time-consuming process).  Neither approach is 
regularly used to reach human-derived decisions.   

Quite often, humans do not use the deductive logic process where premises follow directly to 
conclusions such as the method of formal proof that is used in mathematics or that often drives 
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common machine logic.  Instead, humans tend to use a combination of deductive and inductive 
logic, as well as intuition and emotion to reach general conclusions; however, if formal logic is 
used, humans often use more of the inductive process (called the method of discovery) or infer 
from the specific to the general (Searles, 1956). 

It is also critical to note that humans process all information subjectively, even when it is objective 
in nature.  If posed with the question, “Will the sun rise tomorrow?,” virtually everyone would 
indicate (and truly believe) that the sun will rise tomorrow, but that conclusion is based strictly on 
subjective information as reinforced by experience.  Perhaps one person in a million could fully 
comprehend celestial mechanics and mathematics to the degree of producing an objective 
mathematical proof to describe that conclusion, but even that individual would have to rely on 
“objective data” derived by subjective human experience and intellect.  In contrast, machines are 
strictly objective in terms of basic processes such as the binary effects of current being on or 
current being off as the basis for action.   

The method of deductive logic is more often used in machine processes where conclusions are 
made from the general to the specific.  With a military example of machine logic, the following 
premises might be made by an automated system:  (a) a tank is an object that moves; (b) a moving 
metal object can be detected by a radar sensor; (c) deductively, an item “tank” can be associated 
with hypotheses about what constitutes “tank”; (d) a “tank” object can also be tracked or observed 
by a sensor; (e) a machine can be programmed to confirm that the object is a “tank” if pre-existing, 
deductive criteria are met (speed, size, heat output, turning radius, etc.).  Given this logic stream, 
that same machine could then transfer a sensor-driven pixel representation of a “tank” object to a 
screen (in the form of moving pixels).  Then that movement of pixels can (with a screen display) 
be observed by a human who might then conclude that it was “a tank”.  This same machine system 
might use elements of the deductive logic stream to assess the “tank” further and provide “conclu-
sions” based on that sensor stream and logic to conclude that the object was a T-73 tank or an M-
60 tank. 

In comparison, if a human were observing that same “tank” image, s/he might analyze it for 
familiar patterns (pattern recognition, pattern matching) and then form tentative hypotheses and 
create a theory about the “object” tank.  Carrying this example further, a human might predict an 
action performed by that tank that cannot currently be accomplished by a machine.  

S/he would do so using inductive logic processes, but s/he can also inductively extrapolate the 
concept and effects of a “tank” to a much greater degree than any machine.  For example, a person 
may see the “tank object” and conclude that an attack could result against a friendly force at a 
distance of 3 kilometers across a small stream in 20 minutes—a conclusion not backed by 
deductive logic but that may be correct and was subjectively determined based on experience, 
stored knowledge, and very dynamic inductive processes.  Humans may also mix and match 
logical methods and in doing so, do not follow a formal logical pathway of pure deduction or 
induction.  For example, if the object is a T-73 tank, it could actually elicit a fear reaction from the 
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observer because it is likely being driven by an enemy crew with hostile inten-tions—a conclusion 
that could be programmed into a machine but only resulting in a warning or caution and not as the 
actual emotion felt by the observer.  The element of fear induced by the “tank object” would feed 
into the information processing by that human observer and could even subjectively influence his 
or her decision-making process.  

The use of a strict deductive process is not possible for a human to accomplish because of the 
vast number of possible moving objects that could be a tank, so humans typically would not 
deductively identify a moving object as a tank versus a cow versus a cloud versus a tuning fork, 
but they would use an inductive process to pattern recognize and thus quickly determine what 
that object was based on their past experience (Duda, Hart, & Storck, 2001).  This type of 
reaction to information is also mirrored in the expectancies category of Klein’s RPDM 
(discussed in section 3.1.1). 

In contrast to human thinking, machine pattern matching is deterministic and mathematical in 
nature and is bound by various set algorithms (Haskel, 2007).  It typically is not capable of 
learning and prioritizing in real time to compensate for information loss, ambiguity, or deception.  
As a tactical illustration of this idea, a tank camouflaged by white sheets and big red balloons 
could conceivably halt or interfere with the process of automated detection by a machine because 
that particular camouflage approach simply would not have been chosen by a rational human when 
trying to deceive another human (based on “common sense”) and would be a poor camouflage 
choice for a human observer.  However, a human would quickly recognize that deception because 
of his or her ability to inductively prioritize and weigh new or unusual information in real time.   
As humans, we take this process for granted, but machine logic cannot, and thus our abilities as 
humans currently vastly exceed machines in that regard.  Our ability to prioritize and eliminate 
information is as valuable as our ability to collect and process that information.  

3.1.4 Subjective Factors That Affect Human Processing of Cognitive Information, Data 
Risk, Data Value, and Cognitive Bias 

The previous paragraphs have mentioned basic logical process differences between humans and 
machines, but human information processing contains considerably more complexity in how 
humans process information.  A review of some of those processes follows. 

3.1.4.1  Data Risk 

A human using a machine-fused sensor system is completely dependent on sources of information 
that are removed from his or her own experience.  If all data were created equally, this would not 
present such a problematic situation, but each bit of data available to a sensor fusion process has an 
attendant risk level for humans, with some data being quite a bit more risky than other bits of data.  
When data are collected first hand by the human, data risk can be assessed based on that human’s 
experience, but in the remoteness of a situation where information is far removed from the source, 
the credibility of those data is usually not included with the presentation of those data.  This is all 
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too common an issue when one is processing printed, verbal, or visual information.  Each type of 
information has various levels of face validity acceptance, as established by the user, and that level 
of validity drives the acceptance or rejection of the data (Meister, 1985).  A pilot tapping a finger 
on a mechanical altitude display or a computer operator logging out and then back in are examples 
of how humans test information and assess its risk level.  Objectively, a machine has no conse-
quence of risk, i.e., it cannot die from a mistake. 

3.1.4.2  Data Value 

In terms of information value, simply declaring something to be “the way it is” is low value and 
high risk, rather than a good logical basis for action.  That is, unsupported information is lower 
value than if that information were presented with the use of some type of objective, externally 
supported references, citations, or the concurrence of subject matter experts (SMEs). 

Humans weigh the value of any data using very complex rules, some of which are not consciously 
apparent to the human making the decision.  Processes of verification of information involve not 
only logic but circumstance and even an understanding of the motivation someone may have in 
providing those data (Salvendy, 1987).  This may also be thought of in terms of signal detection 
theory, where the criterion point being set is based on the possible magnitude of con-sequences of 
a particular type of occurrence.  This weighing of data is important for any subjective decision, and 
one way in which this type of data could be viewed is from the perspective of bias.  

3.1.4.3  Cognitive Data Biasing 

The term “cognitive bias” implies a conscious or unconscious attempt to weigh an outcome 
according to some type of pre-existing rule or criterion.  Bias may or may not cloud a person’s 
judgment in regard to making decisions.  The issue is that cognitive bias cannot be easily 
dismissed and can influence human judgments independently of facts.   

Cognitive bias is one of the factors that control human actions to some degree, and in this regard, 
we are very different from a machine that does not operate under that type of subjective condition.  
Our sensory systems are all susceptible to unconscious and uncontrollable biases, and we call 
certain of these perceptual biases “illusions”.  Most everyone is familiar with optical illusions in 
which objects do not appear to represent reality, depending on perspective (figure 4).  Simply 
knowing that such biases exist does not make them go away; they are present even in the face  
of our logical knowledge that tells us what information we think should be presented.  As an 
example, when we view an object such as a set of railroad tracks moving away to the horizon, our 
visual sense limitations would lead us to believe that the rails converge at a distance, but logically, 
we know that they do not.  As such, we must also recognize that humans are biased not just in the 
perceptual sense but in the cognitive processes that we employ to collect and process data.  The 
work of Kahneman and Treisman (1984) covers a number of cognitive biases as well as ways that 
humans process information through rules of thumb, technically known as heuristics.  A heuristic 
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is a pattern of thinking which we apply cognitively, in much the same way as Klein and his RPD 
model would describe as an expectancy or plausible goal.  

Zoellner Optical illusion bias (the vertical lines are parallel) 

 
Cognitive bias, are the tires squealing on these cars? 

 

Figure 4.  Two types of human bias (illustrations drawn from public  
domain world-wide web images). 

Conversely, a bias can also be a result of learned behavior, which empowers us to make a good 
decision with a moderate or even low level of information being present.  For example, the sound 
of squealing tires immediately attracts attention because of our prior experience and a bias toward 
associating that precursor sound with an impending vehicle accident (figure 4).  That potential 
accident may or may not occur, but our previous experience and a bias to trust our experience 
allows a quick, often life-saving decision to be made in the absence of additional information.  
Like the startle response to a loud noise, our action is involuntary but is evolutionarily adaptive, 
and with the RPDM and the previous example, the sound of squealing tires is not only a relevant 
cue to action but an expectancy of things to come. 

The human user of sensor systems data often can conclude outcomes based not on vast amounts of 
stored information like a computer but on critical, linked memories that indicate an overall trend.  
This is a critical function of human cognition in that we quite often make judgments based only on 
fragments of information, and sometimes those judgments are correct.   
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4. Results 

4.1 The Five Levels of the JDL Model of Sensor Fusion 

Each of the sensor fusion levels has characteristics, and each of those, in turn, has human factors 
implications.  The following sections discuss the human factors of human interaction with sensor 
processing.  The JDL Fusion Model levels are 

• Level 0 – Pre-processing 

• Level 1 – Object Refinement 

• Level 2 – Situation Refinement 

• Level 3 – Threat Refinement 

• Level 4 – Process Refinement 

• Level 5 – User Refinement 

4.1.1 JDL Level 0, Pre-processing:  Signal or Feature States 

This function is largely out of the realm of human engineering and is one of machine design at the 
hardware and software level.  At this stage, the organization and identification of data are based 
more on machine capabilities than on human limitations or capabilities.  The ability to detect a 
target within a forest or the range of a sensor is driven more by physics than by human psycho-
physics.  However, the mechanical features of any sensor or data collection system should consider 
the capabilities and limitations of human users and should address those inherent values in their 
design specifications and data products so as not to overload the human who receives that infor-
mation stream.  Sensor systems should output their information in ways to maximize human 
recognition and processing.  

The collection and use of data of any type should consider the ultimate user of those data, and the 
product of that process should match the abilities of its user.  For example, if an electro-optical 
machine can scan 500 square miles of territory per minute, it must store that information and 
provide it to an image analyst in a format s/he can understand and comprehend, and most likely, 
this would not be at the rate that it was originally collected.  However, if the purpose of that scan 
was to identify any large troop movements within that area, as defined by a pre-set moving target 
identification (MTI) algorithm, then that type of troop movement could be automatically isolated 
from the less valuable mass of data and transmitted to the analyst in seconds, thereby allowing him 
or her to make a critical determination of intent without ever having to view all the collected data.  
In this sense, pre-processing and sensor fusion have refined the data, converted them to useful 
human information, and communicated that information to an analyst in a form that s/he can 
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understand and interpret in an order of magnitude less time than if s/he were forced to observe the 
entire stream of information.   

One of the biggest interface mismatches at Level O processing is between what a machine can 
generate and what a human can absorb.  Time, as well as the quantity and quality of information, 
must be matched so that information is fed to the human at a rate that the human can actually 
use. 

4.1.2 JDL Level 1, Object Refinement:  Entity Parametric and Attributive States 

This section is the core step of where the JDL model directly interacts with the human information 
refinement processes.  In order to refine, define, or organize objects, human perception is the first 
step of that process.  Human perception steps as described by Foley and Moray (1987) are dis-
cussed in terms of the perception of information brought to us by our senses and include informa-
tion about sight, hearing, rotation, falling and rectilinear movement, taste, smell, touch, vibration, 
pressure, temperature, cutaneous pain, position and movement (kinesthesia).  Unfortunately, very 
few of these sensory faculties are available to help us make decisions in a typical sensor fusion 
environment, which probably provides only visual imagery and perhaps sound information.  For 
example, an unmanned aircraft system (UAS) operator may only see a video screen image trans-
mitted by his or her UAS, with no aircraft sound, no movement, and no other sensory feedback 
from that system other than the visual channel.  In comparison to actual experience, the informa-
tion contained in that control environment is very limited and superficial.   

In contrast, if that same operator were able to be in that UAS, s/he would see what it sees, hear its 
operation noise, smell the UAS exhaust, the engine vibration, observe the firing of a missile and 
its effects, and would thus build an integrated and richer mental model of the concept “UAS”.  
However, in the typical sensor fusion operations environment, nearly all those sources of infor-
mation about the UAS are not available.  The object UAS becomes abstracted when presented by 
filtering and a single channel presentation (video screen).  This principle of abstractness has often 
led to a disconnection with the object being observed remotely and is seen as a problem with work 
stations in UAS or other robotic systems (Cooke, Pringle, Pedersen, & Connor, 2006).  

All sensor systems, whether they are machine or human, create multiple levels of abstraction 
since they represent reality but are not the reality (Ceruti, 2004).  Most information systems, 
including sensor fusion systems, would be more effective if they were more immersive in nature 
and provided complementary sources of information that mirrored reality.  In effect, the results 
would be less abstract and less symbolic.  If a UAS operator could actually be on board a UAS, 
his or her awareness of that system would be enhanced, but that connectedness to the UAS is by 
definition impossible to achieve.  Therefore, the only way to approximate that state is for the 
operator to have an interface that duplicates the more important system performance features that 
might be found within and about that UAS.  The following object refinement human processes 
are discussed in relation to level 1 JDL fusion and are believed to be critical to proper human 
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understanding of a sensor-fused or other mechanical system, as well as being critical to the 
cognitive processing of any information. 

4.1.2.1  The Speed-Accuracy Trade-off 

The speed-accuracy trade-off is easily summarized since actions can be fast or accurate but not 
extreme in both directions at the same time (Sanders & McCormick, 1993).  Skilled performance 
of an expert can be fast and accurate in comparison to that of a novice, but even within that expert, 
there is always a trade-off between these competing factors in a conflicting and competing 
resource allocation process (Proctor & VanZandt, 1994). 

4.1.2.2 Top-Down Processing 

Top-down processing is a series of human cognitive processes that involve the processing and 
refinement of information (Klapuri, 2007; Parasuraman, 2006).  These processes include the 
Gestalt process, perceptual stereotypes, signal detection, and attention (Wickens, 1987).  A 
discussion of Gestalt processes, stereotypes, and signal detection follows. 

4.1.2.3 Gestalt Processes 

Gestalt processes refer to the human ability to see patterns in data or imagery that intuitively seem 
to fit, without detailed analysis or thought (Koffka, 1935).  These are a form of pattern recognition 
that is quick and fairly effortless.  In principle, Gestalt perception is often associated with visual 
processes, but it is not just confined to the visual sense.   

Gestalt principles are a very powerful tool to quickly discern patterns in information.  For example, 
in the scene in figure 5, the Gestalt perspective quickly identifies objects that do not “fit” in the 
picture, so both the unusual conically shaped tree and a concealed tank are visible at a glance 
because of pattern recognition and matching.  The “Gestalt” of this picture is that of two objects 
that do not “fit” into the background and thus are quickly identified as something other than 
background. 

 

Figure 5.  Gestalt perception (Image from public domain world-wide web). 
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Stereotypes are learned stimuli that can allow an observer to define objects quicker than if the 
information associated with those objects were not coded in this manner.  This is because they 
have a certain compatibility, agreed to by a large portion of a population (Bullinger, Kern, 
Muntzinger, in Salvendy, 1987).  

Common stereotypes include color coding (green = good, red = hot, red force = enemy, blue force = 
allies).  This type of perceptual coding system (Proctor & VanZandt, 1994) is used widely within the 
Army and is typical in the coding of force types (cavalry, artillery, tanks, platoon, battalion, etc.).  

Stereotypes often have no inherent information but rely on memorization in order to achieve their 
meaning; however, a positive trend in symbolic stereotyping is to use objects (icons) that resemble 
the objects that they portray, so for example, a tank icon would be displayed with a track, a basic 
tank chassis outline, and a gun barrel, each bit of information contributing to the concept “tank,” 
and to a limit, this provides faster and more accurate detection and discrimination by the observer.  

Stereotypes also have limitations in the amount of information they can convey and they primarily 
focus on quick, not necessarily accurate, discriminations.  As figure 6 shows, many military symbols 
do not have realistic (iconic) qualities; thus, they must be memorized for content.  However, some of 
the symbols do have iconic qualities (e.g., helicopter blades or the outline of a tank [armor]). 

EXAMPLES OF UNITS IN DIVISIONS 

 

Figure 6.  Stereotypes and iconic symbols (image from the Federation of 
American Scientists, 2006). 
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4.1.2.4 Signal Detection Theory 

The term “signal detection theory” was first used in electronic signal communication in the 1950s 
and subsequently was adopted and expanded greatly by psychologists to describe the perception of 
a signal in the presence of noise (Shannon, 1948).  For psychologists, the term “signal” has been 
broadened to tasking, goals, or perception, while the term “noise” indicates any factor, environ-
mental or other, that interferes with that process.   

This concept of signal detection is typically diagrammed with the use of two normal curves.  One 
curve represents the signal (goal, task, perceived object) and the other curve represents noise or 
anything that interferes with that process of perception; the intersection of the two curves repre-
sents the signal-to-noise relationship for a circumstance.  If the curves are widely separated (lower 
part of figure 7), there is little interference with the task or goal, but as the noise curve further 
intrudes on the task or goal, the greater the level of masking and thus, the greater difficulty of 
performing the task or meeting the goal (illustrated by the upper part of figure 7).  When the two 
curves overlap completely, the goal or task is not possible.  This concept is a powerful analog for 
human performance in terms of human workload. 

 
Figure 7.  Signal detection example (Heeger, 2007). 

4.1.2.5 Attention and Vigilance 

Humans, unlike machines, do not operate on a set or binary type of scale (that is, on or off).  As a 
system, they operate through a variety of operating continua, one of which is called attention.  For 
any task, a person’s involvement with that task is driven by his or her level of attention.  Generally, 
poor attention equals poor performance, proper attention equals proper performance, and over-
attention can lead to a cognitive myopia or attentional tunneling (excessive focus on too small an 
area). 

The presentation of any data involves time, and one area that humans are not noted for is their  
ability to sustain vigilance for extended periods of time.  For example, during World War II, sonar 
operators were shown by Mackworth to have greatly diminished vigilance after only 30 minutes of 
operation, often missing vital signals because of boredom and a vigilance decrement (Parasuraman, 
2007).  UAS operators often are confronted by long periods of inactivity followed by frantic action, 
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followed again by inactivity, and this work environment is not conducive to maintaining vigilance. 
Performance decrements have been modeled and reductions in effectiveness predicted (Cooke et al., 
2006), and there is a large body of research that concerns the loss of performance with sustained 
vigilance.  A sample of research showing a short-term vigilance decrement is shown in figure 8 and 
is called the Mackworth (1948) vigilance curve.  This curve involved the results of detecting changes 
in the ticking of a clock over time.  Essentially, it showed that for boring, repetitious, or infrequent 
tasks, performance suffers greatly. 

Contrary to vigilance decrement, sensor fusion system users must be presented with information 
for a time adequately long enough to process that information (minimal response time limits).  
Continuity of information flow at the right pace is critical in matching machine feeds of infor-
mation and tasking to the abilities of the user. 

Mackworth Vigilance Data
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Figure 8.  Mackworth (1948) vigilance curve (human performance  

decrement over time). 

4.1.3 JDL Level 2, Situation Refinement 

After the perceptual elements have been addressed by the analyst at Level 1 processing, situation 
refinement begins to become more dominant at the JDL Level 2 (situation refinement level).  At 
this stage, the human processes of cognition (rather than just perception) become more involved.  
It is also important to note that there is no clear defining line between human perception and 
cognition, and perceptual biases can easily cross over into cognitive processes and conclusions.  

Raw data from external sources are pre-processed by mechanical systems in Level 0, perceptually 
arranged and manipulated in Level 1, and are then evaluated in Level 2.  As an example from a 
military intelligence analyst environment, the six functions associated with this level are (Blasch & 
Plano, 2003) 

1. Aggregation of information into entities or force structures, 

2. Determination of relationships and working rules, 

3. Interpretation of the actions of entities of forces, 
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4. Determination of the overall purpose of large and small actions, 

5. Hypotheses of current and future activities and testing those hypotheses, 

6. Resolution of anomalous factors and the consideration of deception. 

Each of the six processes within Level 2 builds an awareness of a situation and does so iteratively 
as information is brought together, tested, and evaluated.  There is never actually an end product 
for situation awareness (SA); it is an ongoing, dynamic process that continues even after the reso-
lution of a particular situation.  

Before discussing the six individual processes of Level 2, it would make sense to define SA since 
it is an awareness of information in the first place that then proceeds to all further processes.  
Dr. Mica Endsley’s (1988) definition of SA is the commonly accepted origin of that term:  

The perception of the elements in the environment within a volume of time and space, the 
comprehension of their meaning, and the projection of their status in the near future. 

The user of a sensor fusion system must perceive information that is dependent on that system’s 
perceptual abilities and limitations.  S/he must be able to comprehend that information (thus, much 
of the discussion here about the processes of comprehension and cognition), and then s/he must be 
able to project or predict a possible outcome, based on that perception and comprehension.  Both 
SA and sensor fusion systems have a similar closed loop process and use an input-throughput-
output cycle that is familiar to industrial engineers and human factors practitioners.  Considering 
this overall perspective of SA, the following steps of the JDL level 2 model are discussed in terms 
of human factors principles. 

4.1.3.1  JDL Level 2, Step 1:  Aggregation of Human-Related Data 

Of the six processes, the process of aggregation is readily suitable for integration with current 
automated systems.  The ability to collect data and determine correlations or separate data into 
categories is most easily done by automated means as directed by the human.  For example, given 
a large collection of enemy combatants and the goal of finding a key person(s) from that database, 
a database sorting program can immediately sort those players into categories as defined by a 
military intelligence analyst.  Factors associated with geography, age, birth place, combatant 
service affiliation, notable activities that the person has been involved with, places where s/he has 
lived, personnel s/he has been in contact with, education or schooling affiliations, friends, family 
lineage, military specialty, and a wide variety of known variables can all be sorted and organized 
by an automated routine.  Aggregation could also apply to combination of sensor data from a 
variety of sources, the prioritization of those data, and the use of those data to build a model or 
reach a conclusion.  

4.1.3.2  JDL Level 2, Step 2:  Determination:  Human Relationships and Attributes 

Determination of relationships, attributes, and working rules is an area where automation could 
provide help to the human in the loop.  With the military intelligence domain as an example, 
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enemy personnel relationships can be provided by the correlation of information (such as which 
enemy personnel might be related to whom), which set of personnel might be associated with 
another set of personnel in a chain of command, or a general understanding of the psychological  
or sociological working rules for determining such enemy activities.  Nevertheless, machine-based 
associative algorithms for enemy personnel matching could provide clues to human analysts of 
correlations not obvious from the mere collection of human intelligence (HUMINT) in the field. 

4.1.3.3  JDL Level 2, Step 3:  Interpretation  

This sub-process seeks to answer the question why was an action taken, and it often involves 
human subjective data.  It seeks to answer questions such as “What role did this action have?” or 
“What effect would an action like this have on some defined process?”  It is attempting to derive 
meaning from actions.  It is almost entirely a cognitive process that is aided little by current 
automated systems.  One way in which an automated system might be able to contribute to 
answering these types of questions could be in the graphic presentation of magnitude of effects  
or associations with the use of pie charts or graphs that show trends.  By compiling numeric data 
and reporting them in a graphic way, an analyst can improve his or her overall understanding. 

4.1.3.4  JDL Level 2, Step 4:  Determination: Large and Small Actions and Their Effects  

This process is like construction of a jigsaw puzzle with the analyst placing piece after piece of the 
puzzle together to assess its impact on the overall picture.  Not all information is created equally; 
some provides higher information content than others.  Human beings have a fairly good ability to 
generalize from small pieces of information and to determine a sense of proportion of the value of 
information.  This intuition process is based on past knowledge and often can manifest itself in 
conclusions with only a small amount of information being required; however, it can also lead to 
quick conclusions not supported by facts.   

4.1.3.5  JDL Level 2, Step 5:  Hypotheses:  Testing of Human-Related Information 

The formation of hypotheses by the sensor fusion information user is perhaps one of the most 
important cognitive tasks that s/he must perform, and that testing is often performed with 
subjective data.  Often, a checklist or matrix approach can be used by the analyst to evaluate  
(but not prove) a hypothesis.  In many cases, intuition alone is the basis for decision, whereas  
some more formal and structured method of testing hypotheses should be encouraged. 

4.1.3.6  JDL Level 2, Step 6:  Resolution:  Situational Human Factors 

This process often involves unusual cases where ambiguity is very high.  If a situation does not 
appear to make sense or fit an established pattern, it very well may be some act of deception 
accomplished deliberately to raise doubt, promote confusion, or preempt the use of resources in  
its investigation.  This aspect of sensor fusion has no machine analog since machines have not yet 
been created to lie, subjectively obscure, or in other ways purposefully distort information.  The 
creation of decoys, setting up false troop movements, creation of meaningless activity, propaganda 
releases, hacking, and other forms of deception are often challenges to military sensor fusion 
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systems users because they impugn, distort, or destroy the quality of information that the sensor 
fusion system is transmitting.  

4.1.4 Level 3, Fusion:  Threat Refinement, Estimation, Prediction, and Utility 

This stage of the sensor fusion process begins to isolate causes, to predict outcomes, and to assess 
the utility of those actions.  At this stage of sensor fusion, the human and the machine are taxed 
with interpolating data, creating predictive outcomes, and then determining if those predictions 
have utility in comparison to the real-world events they are modeling.  The third step of SA, 
“prediction,” is critical in this stage. 

4.1.5 Level 4, Fusion:  Process Refinement and Human Learning 

Reviewing the sensor fusion process from start to finish is also a learning process and involves 
training.  Since training is also a cognitive process, psychologists or human factors experts should 
be consulted when a training plan or system is being created.  Improvement and optimization of 
any process is the domain of industrial engineering, but the psychological elements of learning are 
taught as basics to human factors practitioners.  The learning process should always be closed 
loop, that is, iterative and repetitive in order to continually improve a product or a process.  

4.1.6 Level 5, Fusion:  User Refinement 

This process should involve far more than visualization, but it is currently associated with 
visualizing enhancements of the other four levels.  This stage also reflects the ability of the  
user to customize or tailor the process used to achieve the sensor fusion system goals.  It must  
be remembered that human beings have five sensory channels, each of which provides informa-
tion to support cognitive activities.  If a system interface is limited only to visual processes, it is 
inherently disconnected with how humans naturally process information.  It is understandable that 
much of our information is acquired visually as we sit in front of a computer screen and observe 
data products; however, our ability to learn in the real world is greatly enhanced by our using the 
rest of our sensory channels to process information.  The following elements could be added to 
tools for user enhancement beyond the most common visual channel and primarily reflect future 
technological or human engineering approaches to fusing data from complex sources such as 
HUMINT. 

4.1.6.1  Auditory Feedback and Learning Human-Machine Comparisons 

The human auditory channel is a rich, high-density communication medium. In the analysis of 
speech alone, many linguistic principles can be used in providing feedback and learning through 
sensor fusion.  However, linguistics alone is a very complex study and not currently very successful 
in terms of machine processing, other than simple word-for-word or phrase translator systems.  In 
contrast, human observers using logic and experience can extract meaning from text or spoken 
language which is veiled by semantic features such as sarcasm or formalism that contain a very  
great amount of information but would not be detected by machine translation systems.  Psycholo-
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gists understand that inflection, the choice of words, and the manner in which they are delivered all 
contain huge amounts of information that are lost when those words are merely written.  In this 
respect, human perception of auditory feedback, when understood in the context of linguistic and 
semantic rules, can provide a human with far better information conclusions than a machine can.  

4.1.6.2  Sociological and Biodynamic Factors 

As humans who live in a sociological setting, posture, gesture, physical movement, and internal 
bio-physiological factors can tell us a lot about human behavior.  Body language is a colloquial 
term for an externally driven, sociologically influenced communication process.  It is entirely 
possible that a sensor-fused system could even provide cues from posturing, gestures, or move-
ments that could indicate critical details such as deception and denial.  In terms of human percep-
tion and cognition, simply observing an enemy’s spoken language over time may contribute to a 
sociological perspective that helps an analyst better in fusing complex information.  In the past,  
lie detectors were used to assess, from a physiological perspective, the presence of deceptive 
techniques with the use of only one type of electro-physiological measurement (electromyogra-
phy).  In the future, powerful, automated routines could be developed to assess deception and 
denial by combinations of bio-analytical routines involving eye movement, posture, limb move-
ment, or physiological measures such as electro-cardiogram, electro-encephalography, or electro-
myography. 

 

5. Summary Discussion 

This report has briefly covered the essential elements of the JDL definition of sensor fusion and 
discussed how, for each of those elements, human factors can contribute valuable human-centered 
information to those processes and products of sensor fusion.  The information conveyed in this 
report was presented to demonstrate that human engineering principles, the principles of human 
psychology, cognition, learning, and an understanding of human behavior can all help create a 
better method of fusing data into useful information.   

 

6. Future Directions 

The tasking demands required for many military operations are bound to become more, rather than 
less, complex over time.  Asymmetric, small-scale war operations in a network-centric environ-
ment provide personnel with the risk of being lost in a sea of data, while having to anticipate an 
enemy’s action that is not traceable by simple observation of battalions of tanks or thousands of 
troops en masse.  In addition, being removed from direct, experiential contact with the enemy and 
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the ability to employ all of one’s senses in assessing information can result in superficial judg-
ments based on information that is brittle in context, rather than rich in content.  In addition, the 
current warfare environment still has huge risks associated from enemy combatants that do not 
follow many of the historic rules of warfare, nor do they provide traditional trails of information.  
In order to combat this trend, technology and sensor-fused systems have been implemented to 
compensate for this change in direction.  

Planning for conventional military operations against conventional military forces may not be the 
common battle environment for this generation, but that process must adapt to this new environ-
ment in order to maintain the upper hand in maintaining capable military strength.  The use of 
sensor-fused systems has only now begun to emerge from a beginning in rudimentary tracking 
algorithms to the concept that sensor fusion may provide a very powerful tool in synthesizing and 
simplifying information.  This fusion process may have more inherent value than matching large 
numbers of conventional military forces against each other in a well-defined tactical environment.  
If knowledge is power, sensor fusion may be a powerful tool in future military operations. 
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Acronyms 

F-22 Fighter, Model 22, U.S. Air Force 

HFE human factors engineering 

HUMINT human intelligence 

JDL Joint Directors of Laboratories 

MTI moving target indication 

RPDM recognition-primed decision model 

SA situation awareness 

SME subject matter expert 

SRI not an acronym 

UAS unmanned aircraft system (formerly called an unmanned aerial vehicle [UAV]) 
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